
1 © Telelogic AB

Managing Concurrency and Parallel 
Testing with TTCN-3

Pierre Bentkowski, 
Principal Consultant

TTCN-3 Users conference Asia 2007 
Beijing, China

Telelogic Tester™

2 © Telelogic AB

Concurrent TTCN-3

• Why do we need a concurrent test architecture?

• What kind of architectures can be used?

• How TTCN-3 supports such architectures?

• A TTCN-3 example

• TTCN-3 Configuration Operations

• Tips and Guidelines



3 © Telelogic AB

System
Under
Test

Tester1

Tester2

• PCO Point of Control and Observation (Port type)

• CP Control Point (Port type)

• MTC Main Test Component (Component type)

• PTC Parallel Test Component (Component type)

• TS Test System

• TSI Test System Interface 

• SUT System Under Test

Terminology

4 © Telelogic AB

SUT

TS

MTC

PTC

PTC

PCO

PCO

CP

CP

TSI

• PCO Point of Control and Observation (Port type)

• CP Control Point (Port type)

• MTC Main Test Component (Component Type)

• PTC Parallel Test Component (Component Type)

• TS Test System

• TSI Test System Interface 

• SUT System Under Test

Terminology



5 © Telelogic AB

Why do we need a concurrent test 
architecture?

• By nature, devices and users which are interfaced to the SUT 
are functioning in a concurrent manner.

• Even with perfectly synchronized inputs to the SUT, there are 
no guaranties that the SUT will reply with the exact same 
sequence of outputs.

Tester1 Tester2SUT

6 © Telelogic AB

Why do we need a concurrent test 
architecture?

• Tester T1 sends the message A to the SUT

• The SUT replies to both Testers, T1 and T2

• The SUT first sends B to T1, then C to T2

• Therefore the Test Sequence is {T1!A,T1?B,T2?C}

A

B
C

T1 T2SUT



7 © Telelogic AB

Why do we need a concurrent test 
architecture?

• Tester T1 sends the message A to the SUT

• The SUT replies to both Testers, T1 and T2

• The SUT first sends C to T2, then B to T1

• Therefore the Test Sequence is {T1!A,T2?C,T1?B}

A

B
C

T1 T2SUT

8 © Telelogic AB

A

B
C

T1 T2SUT

Why do we need a concurrent test 
architecture?

• Tester T1 sends the message A to the SUT

• The SUT replies to both Testers, T1 and T2

• The SUT first sends B to T1, then C to T2

• The communication channel adds a delay on B

• Therefore the Test Sequence is {T1!A,T2?C,T1?B}



9 © Telelogic AB

Why do we need a concurrent test 
architecture?

• The non-deterministic behaviors of the SUT and the channel 
delays yield to a set of possible sequences.

– This trivial example yields to 2 possible outcomes.

• Having this kind of alternatives would soon generate very 
complex non-concurrent test case descriptions. 

testcase TC_NonConcurrent_01()

runs on HostType {

T1.send(A);
alt {

[] T1.receive(B){
T2.receive(C)

}
[] T2.receive(C){

T1.receive(B)
}

}
// other events ...

}

testcase TC_NonConcurrent_01()

runs on HostType {

T1.send(A);
alt {

[] T1.receive(B){
T2.receive(C)

}
[] T2.receive(C){

T1.receive(B)
}

}
// other events ...

}

10 © Telelogic AB

Why do we need a concurrent test 
architecture?

• Conformance testing:

– A PBX must accept 12 simultaneous connection requests.

– A railroad switching controller must compute inputs from 4 
detection devices and give feedback.

• Service, function and feature testing:

– Establish a 3-way conference.

• Stress, robustness and load testing:

– System must accept 13 simultaneous Service Requests 
multiple times during a sustaining period of time.



11 © Telelogic AB

What kind of architecture can be used?

• Architecture with multiple testers of the same type with only 
one interface.

System
Under
Test

Tester1

Tester2

Tester3

12 © Telelogic AB

What kind of architecture can be used?

• All testers used the same set of messages and interfaces: one 
port definition.

• All testers are identical: one component type.

System
Under
Test

Tester1

Tester3Test
System

Master

Tester2



13 © Telelogic AB

What kind of architecture can be used?

System
Under
Test

Tester1

Tester2

Tester3

• Architecture with multiple testers of different type.

• Each tester uses its own unique interface.

14 © Telelogic AB

System
Under
Test

Tester1

Tester2

Tester3Test
System

Master

What kind of architecture can be used?

• Each tester uses different set of messages and interfaces: 
multiple port types.

• Each tester is different: multiple component types.

• But one port type per component type.



15 © Telelogic AB

What kind of architecture can be used?

• Architecture with multiple testers of different types.

• Each tester type can have multiple kind of interfaces.

System
Under
Test

Tester1

Tester2

Tester3
FireWire/IP

Video
Voice

USB/IP

16 © Telelogic AB

System
Under
Test

Tester1

Tester2

Tester3

Video
Voice

USB/IP
Master

Test
System

What kind of architecture can be used?

• Each tester uses different set of messages and interfaces: 
multiple port definitions.

• Each tester is different: multiple component types.

• Multiple port types per component type.

FireWire/IP



17 © Telelogic AB

What kind of architecture can be used?
• The Executable Test Suite can be:

– One Node - Multi-threaded (Simplest, Default)

– Multi-Node

– Mixed

Test
System

Tester1Master

SUT

Tester2

Tester3

18 © Telelogic AB

• Dynamic creation of the test configuration
– Creation of components

• create
– Creation of connections between Components

• map, unmap
– Creation of connections with the TSI/SUT

• connect, disconnect
• Dynamic control of the component behavior

– Control of component behavior
• start, stop, kill

– Lookup of component behavior
• running, done, alive, killed

How TTCN-3 support such architectures?



19 © Telelogic AB

• Communication between components

– Exchange of messages between components

• send, receive

– Implicit verdict mechanism

• setverdict, getverdict

• none, pass, inconc, fail, error

How TTCN-3 support such architectures?

20 © Telelogic AB

A TTCN-3 Example

mtc:MTC_Type

system:TSI_Type

// Behavior description

testcase TC_Concurrent_01()

runs on MTC_Type 

system TSI_Type {

...
}

// Behavior description

testcase TC_Concurrent_01()

runs on MTC_Type 

system TSI_Type {

...
}



21 © Telelogic AB

system:TSI_Type

mtc:MTC_Type

CP1:CP_Type CP2:CP_Type

A TTCN-3 Example

// Behavior description

testcase TC_Concurrent_01()

runs on MTC_Type 

system TSI_Type {

...
}

// Behavior description

testcase TC_Concurrent_01()

runs on MTC_Type 

system TSI_Type {

...
}

type component MTC_Type { 

port CP_Type CP1;

port CP_Type CP2;

}

type component TSI_Type { 

port PCO1aType PCO1a;

port PCO2aType PCO2a; 

}

// other components ...

type port CP_Type message {

inout // messages ..

}
// other ports ...

type component MTC_Type { 

port CP_Type CP1;

port CP_Type CP2;

}

type component TSI_Type { 

port PCO1aType PCO1a;

port PCO2aType PCO2a; 

}

// other components ...

type port CP_Type message {

inout // messages ..

}
// other ports ...

PCO1a:PCO1aType PCO2a:PCO2aType

22 © Telelogic AB

A TTCN-3 Example

// Behavior description

...

PTC1 := PTC1Type.create

PTC2 := PTC2Type.create

...

// Behavior description

...

PTC1 := PTC1Type.create

PTC2 := PTC2Type.create

...

system

PCO1a PCO2a

PTC1:PTC1Type PTC2:PTC2Type

mtc

CP1 CP2



23 © Telelogic AB

mtc

CP1 CP2

PTC2PTC1

A TTCN-3 Example

// Behavior description

...

PTC1 := PTC1Type.create

PTC2 := PTC2Type.create

...

// Behavior description

...

PTC1 := PTC1Type.create

PTC2 := PTC2Type.create

...

type component PTC1Type { 

port CP_Type CP;

port PCO1bType PCO1b;

}

type component PTC2Type { 

port CP_Type CP;

port PCO2bType PCO2b; 

}

// other components ...

type port PCO1bType message {

inout // messages ..

}
// other ports ...

type component PTC1Type { 

port CP_Type CP;

port PCO1bType PCO1b;

}

type component PTC2Type { 

port CP_Type CP;

port PCO2bType PCO2b; 

}

// other components ...

type port PCO1bType message {

inout // messages ..

}
// other ports ...

system

PCO1a PCO2a

PCO1b:PCO1bType

CP:CP_Type

PCO2b:PCO2bType

CP:CP_Type

24 © Telelogic AB

A TTCN-3 Example

// Behavior description

...

connect(mtc:CP1, PTC1:CP);

connect(mtc:CP2, PTC2:CP);

...

// Behavior description

...

connect(mtc:CP1, PTC1:CP);

connect(mtc:CP2, PTC2:CP);

...

mtc

CP1 CP2

system

PCO1a PCO2a

PTC1 PTC2

PCO1b PCO2b

CP CP



25 © Telelogic AB

A TTCN-3 Example

// Behavior description

...

map(PTC1:PCO1b, system:PCO1a);

map(PTC2:PCO2b, system:PCO2a);

...

// Behavior description

...

map(PTC1:PCO1b, system:PCO1a);

map(PTC2:PCO2b, system:PCO2a);

...

PCO1a

mtc

system

CP1 CP2

PTC1 PTC2

PCO2a

PCO2b

CP CP

PCO1b

26 © Telelogic AB

A TTCN-3 Example

// Behavior description

...

PTC1.start(TS_InitiateCall());

PTC2.start(TS_AnswerCall()); 

...

// Behavior description

...

PTC1.start(TS_InitiateCall());

PTC2.start(TS_AnswerCall()); 

...

function TS_InitiateCall()

runs on PTC1Type {

...

PCO1b.send(msg1);
...

}

function TS_InitiateCall()

runs on PTC1Type {

...

PCO1b.send(msg1);
...

}

function TS_AnswerCall()

runs on PTC2Type {

...

PCO2b.receive(msg2);

CP.send(statusConnected);
...

}

function TS_AnswerCall()

runs on PTC2Type {

...

PCO2b.receive(msg2);

CP.send(statusConnected);
...

}

system

PTC1 PTC2

mtc

msg1



27 © Telelogic AB

A TTCN-3 Example

// Behavior description

...

PTC1.start(TS_InitiateCall());

PTC2.start(TS_AnswerCall()); 

...

// Behavior description

...

PTC1.start(TS_InitiateCall());

PTC2.start(TS_AnswerCall()); 

...

function TS_InitiateCall()

runs on PTC1Type {

...

PCO1b.send(msg1);
...

}

function TS_InitiateCall()

runs on PTC1Type {

...

PCO1b.send(msg1);
...

}

function TS_AnswerCall()

runs on PTC2Type {

...

PCO2b.receive(msg2);

CP.send(statusConnected);
...

}

function TS_AnswerCall()

runs on PTC2Type {

...

PCO2b.receive(msg2);

CP.send(statusConnected);
...

}

system

PTC1 PTC2

mtc

msg2

28 © Telelogic AB

A TTCN-3 Example

// Behavior description

...

PTC1.start(TS_InitiateCall());

PTC2.start(TS_AnswerCall()); 

...

// Behavior description

...

PTC1.start(TS_InitiateCall());

PTC2.start(TS_AnswerCall()); 

...

function TS_InitiateCall()

runs on PTC1Type {

...

PCO1b.send(msg1);
...

}

function TS_InitiateCall()

runs on PTC1Type {

...

PCO1b.send(msg1);
...

}

function TS_AnswerCall()

runs on PTC2Type {

...

PCO2b.receive(msg2);

CP.send(statusConnected);
...

}

function TS_AnswerCall()

runs on PTC2Type {

...

PCO2b.receive(msg2);

CP.send(statusConnected);
...

}

status
Connected

system

PTC1 PTC2

mtc



29 © Telelogic AB

Creating normal component

• Components are automatically destroyed at the end of the 
executed behavior function or when stopped

var PTCType ptcname;

ptcname := PTCType.create("InstanceName");

... // connect, map, ...

ptcname.stop;

ptcname := PTCType.create("InstanceName");

... // connect, map, ...

ptcname.done;

ptcname := PTCType.create("InstanceName");

... // connect, map, ...

30 © Telelogic AB

Creating alive-type component

• Alive Components can execute multiple behavior functions

• Components are not destroyed when stopped or when there 
behavior is done

var PTCType ptcname;

ptcname := PTCType.create("InstanceName") alive;

... // connect, map, ...

ptcname.start(TS_BehaviorTwo());

ptcname.done;

ptcname.start(TS_BehaviorThree());

ptcname.done;

ptcname.kill;

ptcname := PTCType.create("InstanceName") alive;

... // connect, map, ...



31 © Telelogic AB

Connecting and mapping

• After creation of the components we need to connect ports 
between MTC/PTC components and map ports between an 
MTC/PTC component and the Test System Interface – TSI

– The mtc-keyword identifies the MTC, system identifies the TSI 
instance and the self-keyword identifies the currently executing 
MTC/PTC

• Without connecting/mapping a component cannot 
communicate with the outside world 

• When connecting port A and port B, the in list of port A must 
match the out list of port B and vice versa

• When mapping port A and port B, the in list of port A must 
match the in list of port B, and the out list of port A must match 
the out list of port B

32 © Telelogic AB

Unconnect and Unmap

• Connections and Mappings can be undone, to change 
configuration during the runtime of the test

• Syntax is the same as for connect and map



33 © Telelogic AB

Starting and Stopping test components

• Once components are created and connected/mapped, they 
can be started

• The behavior to be executed by the component is given in the 
start command

– The behavior is defined as a function

• Components can be stopped using the stop command
– Only the execution of test behavior is stopped. 
– Components can stop themselves, or other components

• Components can be destroyed using the kill command
– The execution of test behavior is stopped - if any

– All associated resources (including all port connections) are freed
– Components can kill themselves, or other components

34 © Telelogic AB

Querying test components

• The running operation returns a boolean value based on 
whether the component is running or not

• The alive operation returns a boolean value based on weather 
the component is already executing or ready to execute 
behavior, or not

• The done operation can only be executed when the 
component has completed its behavior

• The killed operation can only be executed when the 
component has been destroyed



35 © Telelogic AB

Details from ETSI ES 201 873-1 v3.2.1

36 © Telelogic AB

Details from ETSI ES 201 873-1 v3.2.1



37 © Telelogic AB

Tips and Guidelines

• Common behavior must be defined in function 
function TS_SetupConnection()

runs on PTC1Type {

...

PCO1.send(msg1);

...

• Theses functions can be called by any other function running 
on the same component type.

• These function should be parameterized with the PCO and CP 
that they use.

function TS_SetupConnection(pco:PCOType)

runs on PTC1Type {

...

pco.send(msg1);

...

38 © Telelogic AB

Tips and Guidelines

• It is strongly recommended to check that the PTCs have 
finished their execution, with the use of the DONE statement in 
MTC, before terminating the MTC.

all component.done;

setverdict(pass);

stop;



39 © Telelogic AB

Tips and Guidelines

• There is no need to explicitly passed PTC verdicts to the MTC 
using coordination messages

– A global verdict is automatically maintained by the MTC
– The global verdict is updated whenever a component terminates
– Remember: Verdict never improve

– Make the TTCN-3 script more readable

40 © Telelogic AB

Testing Concept: Self-test of Test Cases

• Use Concurrency to perform a 
self-test of a test case

– All behavior is encapsulated in a 
function. In the normal case, this 
function is simply called in the 
MTC

– For Self-Testing, a Simulation of 
each of the SUT Ports is 
implemented in one or more 
Parallel Test Components (PTCs). 
They are connected to the MTC 
ports

– Since the Test System Interface 
can be left empty, SUT Adaptation 
is not needed for the self-test test 
suite

Normal
Test system

MTC

Test System InterfaceTest System Interface
SUT

Behavior_function()

<<Calls>>

Selftest
Test system

Test System InterfaceTest System Interface

Behavior_function()

<<Calls>>

MTC
PTC (Simu1)

PTC (Simu2)



41 © Telelogic AB

Benefits with Concurrent TTCN

• Less code to write

• Can have several test architectures in the same test suite

• Several service providers can be used

• Other components can be created at any time during the test 
case execution

• Concurrency
– We can have several components executing simultaneously

– Several processes aiming at the same goal


